Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Qun Huang, Qian-Yong Cao, Chun Yi, Chang-Jian Yang and Xi-Cun Gao*

Department of Chemistry, Nanchang University, Nanchang 330047, People's Republic of China

Correspondence e-mail: xcgao@ncu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.124$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$N, N^{\prime}-\operatorname{Bis}(1-n a p h t h y l)-N, N^{\prime}$-diphenyl-1, $\mathbf{1}^{\prime}$ -biphenyl-4,4'-diamine

The title complex, $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{2}$, is a useful charge-carrier transport material in organic electroluminescence devices. There are two half-molecules in the asymmetric unit; each molecule possesses a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond.

Comment

Organic electroluminescence has come to the critical point of large-scale marketing for flat-panel displays since the first report of an efficient layered device by Kodak (Tang \& Vanslyke, 1987). The materials used for charge-carrier transport layers are carefully chosen so that holes and electrons are preferentially conducted to obtain stable efficient devices (VanSlyke et al., 1996). As one of the most important components in common electroluminescent (EL) structures, amorphous amines, e.g. N, N^{\prime}-bis(1-naphthyl)- N, N^{\prime}-diphenyl-$1,1^{\prime}$-biphenyl-4, 4^{\prime}-diamine (α-NPD) having a glass transition temperature of 368 K , are the most successful hole-transporting materials (Naito \& Miura, 1993; Thelakkat \& Schmidt, 1998). However, its crystal structure has not been reported up to now. We have synthesized α-NPD by palladium-catalysed amination and have analysed its crystal structure.

(I)

There are two half-molecules in the asymmetric unit; each molecule possesses a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond (Fig. 1). The amine atoms adopt a trigonal geometry with an average $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle value near 120° and $\mathrm{C}-\mathrm{N}$ bond distances [1.4102 (16)-1.4291 (17) \AA, average $1.418 \AA$] within the normal range (Kennedy et al., 2002).

Experimental

$\mathrm{Pd}(\mathrm{OAc})_{2}(0.002 \mathrm{~g})$ and $\mathrm{P}\left({ }^{t} \mathrm{Bu}\right)_{3}(0.1 \mathrm{ml}, 10 \%$ in hexane $)$ were added to a $20 \mathrm{ml} o$-xylene solution of $4,4^{\prime}$-diiodobiphenyl (2 mmol), N -phenyl-1-naphthylamine (4 mmol) and $\mathrm{NaO}^{\prime} \mathrm{Bu}(4.8 \mathrm{mmol})$ and the mixture was refluxed in an N_{2} atmosphere for $3-5 \mathrm{~h}$ at 393 K . It was then cooled to room temperature, water $(20 \mathrm{ml})$ was added, and the organic layer was extracted, concentrated to dryness under reduced
\qquad

Figure 1
Perspective view of the first half-molecule in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity. [Symmetry code: (A) $-x, 2-y, 1-z$.]

Figure 2
Perspective view of the second half-molecule in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity. [Symmetry code: (A) $1-x, 1-y,-z$.]
pressure, dissolved in a minimal amount of tetrahydrofuran and recrystallized from ethanol. The product was further purified by sublimation [m.p. 552-556 K, $T g=368 \mathrm{~K}$ (determined by differential scanning calorimetry)].

Crystal data

$\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{2}$	$V=1598.4(2) \AA^{3}$
$M_{r}=588.72$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.223 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.3089(9) \AA$	Mo $\mathrm{A} \alpha$ radiation
$b=11.3382(10) \AA$	$\mu=0.07 \mathrm{~mm}^{-1}$
$c=14.5056(13) \AA$	$T=293(2) \mathrm{K}$
$\alpha=82.378(10)^{\circ}$	Plate, yellow
$\beta=77.671(2)^{\circ}$	$0.50 \times 0.30 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.754, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.124$
$S=1.06$
6574 reflections
416 parameters
H -atom parameters constrained

9404 measured reflections 6574 independent reflections 4494 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=27.8^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0633 P)^{2}\right. \\
& +0.0935 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.19 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0078 \text { (17) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

C9-N1	$1.4291(17)$	C23-N2	$1.4220(17)$
C11-N1	$1.4217(16)$	C33-N2	$1.4156(17)$
C17-N1	$1.4102(16)$	C39-N2	$1.4122(15)$
C17-N1-C11	$120.98(10)$	C39-N2-C33	$121.31(10)$
C17-N1-C9	$119.88(11)$	C39-N2-C23	$120.59(10)$
C11-N1-C9	$119.10(10)$	C33-N2-C23	$117.93(10)$

All H atoms were positioned geomertrically and treated as riding $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL

This work was supported by the Ministry of Education of China (grant No. Z02873) and the Bureau of Education of Jiangxi Province (grant No. Z0283).

References

Bruker (1998). SAINT (Version 4.00), SMART (Version 5.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Kennedy, A. R., Smith, W. E., Tackley, D. R., David, W. I. F., Shankland, K., Brown, B. \& Teat, S. J. (2002). J. Mater. Chem. 12, 168-172.
Naito, K. \& Miura, A. (1993). J. Phys. Chem. 97, 6240-6248.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, C. W. \& Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.
Thelakkat, M. \& Schmidt, H. W. (1998). Adv. Mater. 10, 219-223.
VanSlyke, S. A., Chen, C. H. \& Tang, C. W. (1996). Appl. Phys. Lett. 69, 21602162.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

